
Probability Theory Name:
2015/16 Semester IIb Student number:
Instructor: Daniel Valesin
Final Exam
14/6/2016
Duration: 3 hours

This exam contains 10 pages (including this cover page) and 8 problems. Enter all requested in-
formation on the top of this page, and put your initials on the top of every page, in case the pages
become separated.

You are allowed to have two hand-written sheets of paper and a calculator.

You are required to show your work on each problem except for Problem 1 (True or False).

Do not write on the table below.

Problem Points Score

1 14

2 14

3 14

4 14

5 14

6 7

7 7

8 6

Total: 90
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Standard Normal cumulative distribution function
The value given in the table is FX(x) for X ∼ N (0, 1).

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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1. (a) (7 points) A closet has 5 pairs of shoes. I open the closet in the dark and take 4 shoes
at random, without replacement (that is: whenever I take a shoe, it is chosen uniformly
among all shoes that are still inside the closet). Find the probability that I can form at
least one pair with the shoes I took.

(b) (7 points) Bas is doing a cycling tour of Morocco. Today he wakes up in Rabat and needs
to travel to Casablanca. Before he starts, he can study a map and ask for directions. If
he does both, the probability that he will get lost is 0.15. If he studies the map but does
not ask for directions, the probability that he will get lost is 0.4. If he asks for directions
but does not study the map, the probability that he will get lost is 0.3. If he does neither,
the probability that he will get lost is 0.7.
Suppose that he uses a fair coin toss to decide whether or not to ask for directions (heads
→ asks; tails → does not ask), and another independent fair coin toss to decide whether
or not to study the map (heads → studies; tails → does not study).
Given that he arrives in Casablanca without getting lost, what is the probability that he
studied the map?

Solution. (a) Without any restrictions, the number of ways to take 4 shoes out of the 10
available shoes is

(
10
4

)
. The number of ways to take 4 shoes out of the 10 available shoes so

that no pairs can be formed is
(
5
4

)
· 24 (we choose 4 distinct pairs and 1 shoe from each pair).

Thus, the desired probability is

1−
(
5
4

)
· 24(

10
4

) =
13

21
.

(b) Define the events

EM = {Bas studies his map}
ED = {Bas asks for directions}
L = {Bas gets lost}.

Then,

P(EM | Lc) =
P(Lc ∩ EM ∩ ED) + P(Lc ∩ EM ∩ EcD)

P(Lc ∩ EM ∩ ED) + P(Lc ∩ EM ∩ EcD) + P(Lc ∩ EcM ∩ ED) + P(Lc ∩ EcM ∩ EcD)

=
1
4 · 0.85 + 1

4 · 0.6
1
4 · 0.85 + 1

4 · 0.6 + 1
4 · 0.7 + 1

4 · 0.3
= 0.591837.
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2. Let . . . , X−3, X−2, X−1, X0, X1, X2, . . . be independent Bernoulli(p) random variables, p ∈
(0, 1). Define

Yn = −1 + min{m ≥ n : Xm 6= Xn} −max{m ≤ n : Xm 6= Xn}, n ∈ {. . . ,−1, 0, 1, . . .}.

(a) (7 points) Find the probability mass function of Yn.

(b) (7 points) Find E(Yn). You may use the formula:

∞∑
n=1

n2 · qn =
q + q2

(1− q)3
, 0 < q < 1.

Solution. (a) For k ∈ {1, 2, . . .},

fYn(k) = P(Yn = k)

=

k∑
`=1

P(Xn−` = 0, Xn−`+1 = · · · = Xn−`+k = 1, Xn−`+k+1 = 0)

+
k∑
`=1

P(Xn−` = 1, Xn−`+1 = · · · = Xn−`+k = 0, Xn−`+k+1 = 1)

=
k∑
`=1

(1− p)2pk +
k∑
`=1

(1− p)kp2

= kpk(1− p)2 + k(1− p)kp2.

(b)

∞∑
k=1

k · fYn(k) =
∞∑
k=1

k · (kpk(1− p)2 + k(1− p)kp2)

= (1− p)2
∞∑
k=1

k2pk + p2
∞∑
k=1

k2(1− p)k

= (1− p)2 · p+ p2

(1− p)3
+ p2 · 1− p+ (1− p)2

p3

=
5p2 − 5p+ 2

p− p2
.
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3. We have n balls and m urns. The balls are placed in the urns one by one, and any given ball
has the same probability of going into any urn. Let X be the number of urns that receive at
least one ball.

(a) (7 points) Find E(X).

(b) (7 points) Find Var(X).

Solution. For i = 1, . . . ,m, let Xi be the indicator function of the event that urn i receives at
least one ball. Then,

E(Xi) = P(Xi = 1) = 1− P(Xi = 0) = 1−
(
m− 1

m

)n
,

so

Var(Xi) =

(
1−

(
m− 1

m

)n)
·
(
m− 1

m

)n
.

Moreover, if i 6= j,

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = P(Xi = Xj = 1)−
(

1−
(
m− 1

m

)n)2

.

Noting that

P(Xi = Xj = 1) = 1− P({Xi = 0} ∪ {Xj = 0})
= 1− P({Xi = 0})− P(Xj = 0) + P(Xi = Xj = 0)

= 1− 2

(
m− 1

m

)n
+

(
m− 2

m

)n
,

we get the expression for the covariance:

Cov(Xi, Xj) = 1−2

(
m− 1

m

)n
+

(
m− 2

m

)n
−
(

1−
(
m− 1

m

)n)2

=

(
m− 2

m

)n
−
(
m− 1

m

)2n

.

Since X =
∑m

i=1Xi, we thus obtain

E(X) = m

(
1−

(
m− 1

m

)n)
,

Var(X) = mVar(X1) +m(m− 1)Cov(X1, X2)

= m

(
1−

(
m− 1

m

)n)
·
(
m− 1

m

)n
+m(m− 1)

((
m− 2

m

)n
−
(
m− 1

m

)2n
)
.
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4. (a) (7 points) A random variable X has pdf

fX(x) =
c

x2 − x
, 2 < x < 5.

Find c and E (bXc) (b·c denotes the floor function. For a non-negative real number x, bxc
is the largest integer n such that n ≤ x).

(b) (7 points) Two random variables Y and Z have joint probability density function

fY,Z(y, z) =
e−z

z
, 0 < y < z <∞.

Compute E(Y 2 | Z = z).

Solution. (a)

1 = c ·
∫ 5

2

1

x2 − x
dx = c ·

∫ 5

2

(
1

x− 1
− 1

x

)
= c · log

(
8
5

)
=⇒ c = 1/ log

(
8
5

)

E(bXc) =

∫ 5

2
bxc · fX(x) dx

= 2 ·
∫ 3

2
fX(x) dx+ 3 ·

∫ 4

3
fX(x) dx+ 4 ·

∫ 5

4
fX(x) dx

= 2 · log
(
4
3

)
+ 3 · log

(
9
8

)
+ 4 · log

(
16
15

)
.

(b) For any y > 0,

fY |Z(y | z) =
e−z/z∫ z

0 e
−z/z dy

=
1

z
, y ∈ (0, z).

Hence,

E(Y 2 | Z = z) =

∫ z

0
y2 · 1

z
dy =

z2

3
.
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5. (a) (7 points) Prove that, if X ∼ Binomial(n, p), then the moment-generating function of X
is MX(t) = (1 + p(et − 1))n.

(b) (7 points) Prove that, if Y ∼ Poisson(λ), then the moment-generating function of Y is
MY (t) = eλ(e

t−1).

Solution. (a)

MX(t) = E(etX) =
n∑
i=0

eit
(
n

i

)
pi(1− p)n−i =

n∑
i=0

(
n

i

)
(pet)i(1− p)n−i = (1− p+ pet)n.

(b)

MY (t) = E(etY ) =

∞∑
i=0

eit
λi

i!
e−λ = e−λ · (λet)i

i!
= e−λ · eλet = eλ(−1+e

t).
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6. (7 points) If X1, X2, . . . are independent Poisson(1) random variables, then for each n,

X1 + · · ·+Xn ∼ Poisson(n)

(you do not need to prove this). Use this fact to prove that

for all ε > 0,
∑

i∈N: (1−ε)n≤i≤(1+ε)n

ni

i!
· e−n n→∞−−−→ 1

and
n∑
i=0

ni

i!
· e−n n→∞−−−→ 1

2
.

Solution. Let Yn =
∑n

i=1Xi ∼ Poisson(n). Then, by the Weak Law of Large Numbers, we
have

Yn
n

n→∞−−−→
P

E(Xi) = 1,

which means that, for any ε > 0,

P
(∣∣∣∣Ynn − 1

∣∣∣∣ ≤ ε) n→∞−−−→ 1,

which means that
P (Yn ∈ ((1− ε)n, (1 + ε)n))

n→∞−−−→ 1,

that is, ∑
i∈N: (1−ε)n≤i≤(1+ε)n

fYn(i) =
∑

i∈N: (1−ε)n≤i≤(1+ε)n

ni

i!
· e−n n→∞−−−→ 1.

Next, by the Central Limit Theorem, Yn−n√
n

n→∞−−−→
(d)

N (0, 1), so, letting Z ∼ N (0, 1),

n∑
i=0

ni

i!
· e−n = P (Yn ≤ n) = P

(
Yn − n√

n
≤ 0

)
n→∞−−−→ P(Z ≤ 0) =

1

2
.
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7. (7 points) Suppose X1, X2, . . . are Bernoulli(p) random variables and assume that, for some
constant K > 0, we have

Cov(Xi, Xj) = 0 for all i, j with |i− j| > K.

Show that X1+···+Xn
n converges in probability to p as n→∞.

Hint. First prove that |Cov(Xi, Xj)| ≤ 1 for every i, j. Then use this to obtain an upper bound
for Var(

∑n
i=1Xi). Finally, try to repeat the proof of the weak law or large numbers, using

Chebychev’s inequality.

Solution. We have Var(Xi) = p(1− p) for each i, so

|Cov(Xi, Xj)| ≤ Var(Xi) ·Var(Xj) = p2(1− p)2 ≤ 1.

Then,

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2

n∑
i=1

∑
j∈{i+1,...,n}

Cov(Xi, Xj) ≤ np(1− p) + 2Kn.

For any ε > 0,

P
(∣∣∣∣∑n

i=1Xi

n
− p
∣∣∣∣ > ε

)
= P

( n∑
i=1

Xi − pn

)2

> ε2n2



≤
E
(

(
∑n

i=1Xi − pn)2
)

ε2n2
=

Var(
∑n

i=1Xi)

ε2n2
≤ np(1− p) + 2Kn

ε2n2
n→∞−−−→ 0.
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8. (6 points) A person has 100 light bulbs whose lifetimes (in hours) are independent random
variables following an Exponential(5) distribution (that is, with pdf f(x) = 1

5e
−x/5 for x > 0).

If the bulbs are used one at a time, with a failed bulb being replaced immediately by a new
one, approximate the probability that there is still a working bulb after 525 hours.
Solution. Let Xi be the lifetime of the ith light bulb, then X =

∑100
i=1Xi has expectation

E(X) = 500 and Var(X) = 2500, so that the Central Limit Theorem implies that

P(X ≥ 525) = P
(
X − 500

50
≥ 525− 500

50

)
≈ 1− FZ(1/2),

where Z ∼ N (0, 1). The approximate answer is thus 1− 0.6915.


